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Physical concepts which have proven to be of substantial aid in the understanding of the underlying physical
mechanisms of noisy light spectroscopy are established and discussed. These physical concepts are extracted
from the technique of factorized time correlation diagram analysis. Examples are presented to add concreteness
the general discussions of the physical concepts with coherent anti-Stokes Raman scattering of noisy light
serving as a particularly useful example.

I. Introduction

It is truly a honor to contribute to this special issue
memorializing Professor A. C. Albrecht. As is clear from his
numerous contributions to the literature, Professor Albrecht was
an excellent and leading scholar. What might be less evident,
however, is Professor Albrecht’s contribution to science as a
teacher. As his many students, which includes the present author,
will surely verify, Professor Albrecht was truly a remarkably
gifted teacher. He was a patient and kind mentor who gave his
students a great gift as he molded them into scientists. His recent
passing is a tremendous loss to the scientific community: he
will be deeply missed.

This special issue will no doubt cover many of the areas of
physical chemistry in which Professor Albrecht has contributed.
The current paper deals with one of those areas: noisy light
spectroscopy.1-53 Professor Albrecht was one of the leaders of
this interesting field from very early in its development to the
present time, with most of his efforts coming from 1986-2001.
Professor Albrecht published 30 papers and gave numerous talks
on the subject of noisy light spectroscopy.

It has long been known that broadband nontransform-limited
quasi-continuous wave noisy light (hereafter referred to simply
as noisy light) can be used to achieve femtosecond scale
interferometric time resolution.1-3 The main idea in the use of
noisy light for ultrashort timing is that, as opposed to the use
of coherent short (femtosecond) pulses, it is the coherence (or
correlation) timeτc of the light, not the temporal profile of its
pulse, that determines the time resolution. In principle, the noisy
beam may be continuous wave (cw), although in practice it is
often pulsed on the ordered of nanoseconds (still essentially
cw relative to femtosecond and picosecond material dynamics).
The coherence time of the light produced by standard laser dyes
operating in a broadband laser (such that much of the emission
spectrum of a given dye is released) is typically on the scale of
hundreds of femtoseconds, proportional to the reciprocal
bandwidthΓ of the noisy light spectrumJ(ω). In a typical
experiment, the noisy source enters a dispersion-compensated
Michelson interferometer to generate identical twin beams. One
of the beams (referred to as B′ and having wavevectork′) is
delayed by timeτ over the other (referred to a B and having

wavevectork) by use of a controllable spatial delay in one of
the arms of the interferometer.

Noisy light can be used to probe molecular dynamics, and it
offers an unique alternative to the more conventional frequency
domain (narrow bandwidth) spectroscopies and ultrashort (fem-
tosecond scale) pulse time domain spectroscopies. Like the
frequency domain spectroscopies, the cw nature of noisy light
allows precise measurement of transition frequencies. However,
like time-resolved techniques, its ultrashort noise correlation time
offers the time resolution to directly measure the time domain
material response. There is a noisy light analogue for nearly
every current conventional optical spectroscopy. Notable excep-
tions are those spectroscopies that explicitly exploit the phase-
locked nature of short pulses. In short, noisy light techniques
offer a third means of studying molecular line shapes which
complements the more familiar cw and ultrashort pulse tech-
niques.

The differences in these three techniques are apparent in the
excitation source. Continuous wave experiments involve the use
of beams which have a very narrow spectral bandwidth. In fact,
in nearly all cases, a perfectly coherent monochromatic source
can be assumed without introduction of any significant error
into the theory. The monochromatic nature of this type of
excitation source makes it ideal for directly probing spectral
features of the sample. The disadvantage is that all the time
resolution is lost: no direct time measurements can be made.
Time information must be obtained through analysis of the
spectral information (i.e., through Fourier transformation of the
experimental data). Short pulse experiments are in sharp contrast
to cw experiments because, because in short-pulse experiment,
many frequencies are present in the spectrum of the excitation
light source. In order for these frequency components to conspire
to produce a short pulse, they must bephase-locked(not to be
confused with phase matching). That is, all frequency compo-
nents must be have a precise phase relationship with one another.
The short pulses are ideally suited for direct time measurements.
The downside to this is that (finely resolved) spectral informa-
tion must be determined through analysis of the time informa-
tion. The phase-locked requirement forces a loss in the ability
to directly probe the sample spectrally. (Gross spectral probing
is possible since real short pulses do not have infinitely broad
spectra.) Spectral information often appears as quantum beats
which can be quite complicated if many oscillations are present.† Part of the special issue “A. C. Albrecht Memorial Issue”.
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Noisy light has a similar spectrum to that of short pulses, with
the important distinction that it is completelyphase-unlocked.
That is, the phase of each frequency component is completely
independent of any other component. In a sense, each frequency
component is behaving as if it came from an independent cw
source. In other words, the noisy light is built from an incoherent
superposition of monochromatic cw light. This random super-
position produces a beam that carries an electric field, which is
a stochastic function of time. One says the noisy light iscolor-
locked, because each color (or frequency) is coherent only with
itself: it is uncorrelated with any other color. The color locking
gives noisy light the ability to probe fine spectral features more
directly than with short pulses (each quantum state is probed
independently rather than coherently) and probe time features
more directly than cw beams. The disadvantage is that neither
frequency nor time features can be directly probed without some
data analysis. So, in some sense, noisy light is an intermediate
between cw and short-pulse methods.

Experimentally, the difficulties inherent with noisy light
techniques are on par with cw methods. These techniques are
significantly easier to setup and perform than ultrashort pulse
techniques. One main reason for this is that optical dispersion
has very little effect on noisy light techniques, and it is quite
easily controlled in the experimental setup.14 Second, no
sophisticated pulse generation or amplification is needed. From
a pragmatic point of view, noisy light and cw experiments are
generally less expensive and their signals are strong and quite
robust relative to the short-pulse case.

The theory describing noisy light spectroscopy is necessarily
more complicated then its conventional (noise-free) counterparts
because appropriate treatment of the noise correlations must be
superimposed on the conventional theoretical description. A
diagrammatic approach called factorized time correlation (FTC)
diagram analysis, invented and developed by Professor Albre-
cht’s group, has aided the theoretical investigation of noisy light
spectroscopies.15-18 The set of FTC diagrams for any given
noisy-light-based nonlinear optical spectroscopy represents the
decomposition of that spectroscopy into its most elementary
“physically” meaningful components. The FTC diagrams allow
one to greatly organize and simplify rather extensive calcula-
tions. In fact, several principles of FTC diagram analysis have
been developed which allows one to extract much information
from them without the need to perform any calculations.

The mathematics of time domain noisy light spectroscopy
(in the perturbative limit) has been presented and discussed in
much detail.1,12,22 The original work1-3 assumed aδ-function
correlation for the noisy field (i.e., a white light limit) and
proceeded with perturbatively evolving the density operator in
the standard way54 (with the complication that stochastic
averaging over the noise must be done at the intensity level) to
obtain a material response. Later models gave Lorentzian15,22

and Gaussian22 spectra to the noisy light which added to the
computational difficulty but offered further insights. Although
mathematics is the most precise language in which to examine
noisy light phenomena, a main goal of this paper will be to
present more physical considerations, which serve to augment
the mathematical foundation already laid, and to give some
tangible insight to the equations and underlying physics. These
ideas are also helpful in organizing and exposing the potential
errors in calculations.

This work begins by establishing some preliminary concepts
that will aid us in understanding subsequent ideas. Following
this, several physical concepts are set forth in a general way
but with particular examples to give concreteness the ideas. The

developed physical concepts are then used in the description of
the coherent anti-Stokes Raman scattering signal using noisy
light (called I(2)CARS). I(2)CARS is developing into arguably
one of the most useful applications of noisy light spectroscopy.
Finally, some concluding remarks are made.

II. Preliminary Concepts

Several preliminary ideas must be presented in order to clearly
show the basis for the physical description of the noisy light
problem and its connection to the mathematical formulation.
These include brief discussions of the bichromophoric model,
the mathematical representation of noisy light, the Wiener-
Khintchine theorem, the motivation for the use of FTC diagrams,
and finally a review of filtered incoherent light.

A. Bichromophoric Model. In nonlinear optical spec-
troscopies, the signal is usually quadrature detected. That is,
the signal intensity (the mod-square of the total field) is the
experimentally measured quantity. The total field is the (phase-
matched) sum of the signal fields launched from each of the
individual chromophores in the sample. The mod-square of this
sum is dominated by the cross terms, i.e., fields launched from
two distinct chromophores. The total intensity is then very well
represented by the sum of all pairwise (two chromophore)
contributions. Thisbichromophoric model22,55,56leads to, for
example, the familiarN2 dependence of the signal intensity in
the coherent nonlinear spectroscopies, whereN is the number
density of chromophores in the sample. For ordinary nonlinear
spectroscopies, this point is not of practical relevance. Thejth-
order polarization (e.g.,j ) 3 for four-wave mixing) alone is
sufficient for describing the nonlinear signal. Going to the
intensity level is trivial (it is just the mod-square of the calculated
polarization). For noisy light spectroscopies, however, stochastic
averaging of the noise at the intensity level requires that special
attention be given to the signal intensity. The trivial mod-
squaring of the nonlinear polarization is now insufficient. The
correlations among the various noisy light field interactions on
the two (otherwise independent) chromophores must be explic-
itly treated. These correlations are fundamental to the under-
standing of noisy light spectroscopies.

Explicit use of the bichromophoric model requires assigning
distinct timelines (t and s) to each of the two generic chro-
mophoresRt and âs, making up a given pairwise cross term.
The two timelines allow for the (in general) different histories
of evolution for each chromophore; chromophoresRt and âs

are independent (aside from the correlation between the various
field interventions on each). As in traditional nonlinear optical
spectroscopies using coherent pulses, the density operator is
solved perturbatively tojth-order to give thejth-order polariza-
tion (or its Fourier transform) which is taken to quadrature. Upon
going to quadrature, the dominant intensity is derived from the
cross terms between the polarization on one chromophore
(having thet timeline) and that on another (having thes timeline)
Subsequent stochastic averaging entangles thet and s time
variables in a nontrivial way.15,22

B. Noisy Light. The physical noisy light field is expressed
as

Here,ε is the complex analytic signal57 associated withE, which
is implicitly used to determine the subset of relevant field actions
of any given phase-matched spectroscopy. For example, a third-
order spectroscopy phase matched alongks ) k1 + k2 - k3 calls
for three real field actionsE1E2E3 (ignoring time ordering for
simplicity). It is convenient here to work with the complex

E(r ,t) ) ε(r ,t) + ε*( r,t) (1)
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analytic signalsε1ε2ε3
/ to narrow in on the subset of field

actions which contribute to the particular phase-matched signal
of interest. It is important to remember that the observed signal
is finally obtained by taking the real part of the result obtained
using the complex analytic fields. This is taken further in noisy
light problems. Here, one considers a signal launched from two
chromophores (cf., the bichromophore model) acting in conju-
gate, for example,ε1ε2ε3

/ from one andε1
/
ε2
/
ε3 from the other

(with distinct timelines). A careful treatment of the field in this
manner has been presented with special emphasis on the Raman-
based spectroscopies.58

The focus of this paper is exclusively in the time and
frequency domains; spatial considerations are not addressed as
cross-spectral purity57 is assumed. For convenience, the tensor
notation is suspended and the treatment is reduced to a scalar
one. The wavevectorsk andk′ are distinct in order to spatially
resolve the signal (through phase matching). However, the angle
between them is assumed small so that their general direction
of propagation can be taken to be along thez-axis allowing the
field to be expressed asE(r ,t) w E(z,t). Appropriate orientational
averaging of the elements of the dipole moment vector operator
projected onto the identically polarized twin beams leaves an
effective scalar transition dipole momentµ and a scalar field
E(z,t).

The real scalar noisy field is expressed more explicitly as

wherep is a complex stochastic function of time assumed to
obey circular complex Gaussian statistics57 andωj is the central
carrier frequency of the field. The normalization constantE0 is
such that〈p(τ)p*(0)〉 ) γ(1,1)(τ), whereγ(1, 1)(τ) is the normalized
second-order complex coherence function57 for a stationary
complex random function (the superscript (1,1) denotes the order
of the complex random function and of the complex conjugate
of that function in the correlator). On femtosecond time scales,
the nanosecond pulses used in noisy light experiments are
effectively cw; so, for the theory, noisy light is taken to be cw
and soE0 is constant; but for noisy fields that are (nanosecond)
pulsed,E0 is really a slowly varying function oft.

Taking for simplicity the case in which the only active fields
areB andB′, the electric fields associated with each are

and

respectively. With these definitions,τ > 0 meansB′ lags behind
B. For cases when there are many fields, the noisy fields that
are not delayed during an experiment are labeledBi, the delayed
fields are labeledB′i, and any monochromatic fields are labeled
M i (The subscripts are dropped if there is only one such field.)

The total real electric field at a pointz0 at time t is

where l, m, andn are the number of timesB, B′, andM act,
respectively. Thus thejth-order spectroscopy requiringEtot(t1)-
Etot(t2)...Etot(tj) has potentially [2(l + m + n)] j terms involving
the complex analytic function and its conjugate. This total
includes all field orderings and all possible combinations of

wavevectors and frequencies. Fortunately, phase matching and
spectral filtering greatly reduce this number.58 As a concrete
example, consider the third-order photon echo-like noisy light
experiment, which is a degenerate four-wave mixing process
whereB acts twice andB′ acts once. This was the first noisy
light experiment to be reported.1-3 Here,Etot(z0,t) ) EB + EB′
now from the abovej ) 3, l ) 1, m ) 1, andn ) 0. Thus,
there are [2(1+ 1)]3 ) 64 field products at the complex analytic
signal level.

C. Wiener-Khintchine Theorem and Color Locking. The
Wiener-Khintchine (WK) theorem is expressed as

whereJ(q) is the spectral density of the random functionp.
The WK theorem states that a two-point (pair) time correlator
may be expressed as the Fourier transform of the spectral density
of the random process.

An extremely important consequence of stationarity and the
WK theorem can be seen by examining a pair correlator in
frequency space.57 Here

where the change of variables (t, t′) w (τ ) t - t′, t′) was used
in going to the third line and both the WK theorem and the
integral definition of theδ-function were used to obtain the final
result. In the context of noisy light spectroscopy, the physical
interpretation of eq 7 is that, within the same beam, light of
different frequencies (colors) are uncorrelated for stationary
noisy light. This is the mathematical expression forcolor
locking.

D. Need for FTC Diagrams. The interpretation of the
nonlinear optical signal is more complicated for noisy light
spectroscopies than it is for coherent short pulse experiments.
There are two main reasons for this. First, the length of the
pulses is essentially cw on the femtosecond time scale; hence,
all fields involved in producing the signal are present at all times.
The second is the necessity to stochastically average over the
noise at the mod-square (intensity) level (cf., the bichromophoric
model). Nonetheless, the first step in interpreting the signal is
the same as for short pulse experiments and involves considering
the term appropriate to the order of the nonlinear spectroscopy
in the perturbative expansion of the density operator.

1. Material Response.Regardless of the light source used to
probe the material, it is necessary to begin with all the terms of
the density matrix describing the spectroscopy of interest. In
general, for ajth-order spectroscopy there are 2jj! terms in the
expansion of the density matrix. The 2j factor arises from the
number of distinct Liouville paths,54 and thej! factor comes
from the number of possible field orderings. Several diagram-
matic methods have been developed for keeping track of the
density matrix terms.59 The diagrammatic technique employed
here is that of Lee and Albrecht.60 This technique has the
advantage that resonances are immediately seen without losing
the sense of time evolution. The technique involves drawing a
solid horizontal line for real states of the chromophore and
dashed lines for virtual states. Solid (dashed) arrows represent

γ(1,1)(τ) ) 〈p(τ)p*(0)〉 ) ∫-∞

∞
dq J(q)e-iqτ (6)

〈p̃(q)p̃*(q′)〉 ) 〈∫-∞

∞
p(t)eiqt dt ∫-∞

∞
p*( t ′)e-iq′t dt ′〉

) ∫-∞

∞
dt ′ 〈p(t)p*( t′)〉eiq(t-t′)ei(q-q′)t′

) ∫-∞

∞
γ(1,1)(τ)eiqτ dτ ∫-∞

∞
dt ′ ei(q-q′)t

) J(q)δ(q - q′) (7)

E(z,t) ) E0p(t)e-iωj t+ikz + E0p*( t)e+iωj t-ikz (2)

EB(z, t) ) E0p(t)e-iωj t+ikz + E0p*( t)e+iωj t-ikz (3)

EB′(z,t) ) E0p(t - τ)e-iωj (t-τ)+ik′z + E0p*( t - τ)e+iωj (t-τ)-ik′z

(4)

Etot(z0,t) )
EB1

+ ... + EBl
+ EB′1

+ ... + EB′m
+ EM1

+ ... EMn
(5)
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ket (bra) evolution with an upward-pointing arrow representing
the action of the positive (negative) Fourier component. These
diagrams are called wave mixing energy level (WMEL)
diagrams. WMEL diagrams are drawn the same way for both
coherent short pulse and noisy light spectroscopies. The only
distinction at this point lies in which diagrams are the most
important or which may be eliminated due to field orderings.
Often the field orderings for coherent short pulse spectroscopies
are (assumed) experimentally fixed due to explicit time ordering
in the laboratory and an immediate reduction in the number of
terms is possible. For noisy light spectroscopies, all field
ordering must be considered. The material response is contained
in the kernel of the integral equations of motion of the density
matrix elements. For any given pair of levels, there is a
characteristic (Bohr) frequency and an associated decay param-
eter describing the “dark” two-state kinetics. The total material
response is a sum over all transition dipole weighted pairs of
levels. The subject of material response is an area of very active
research. Understanding the mechanisms involved in coherence
and population decay is of great theoretical and applied interest.

2. Light Response.The point at which the two types of
ultrafast spectroscopies diverge is with regards to the behavior
of the light. We have seen above that the noisy light develops
the jth-order density matrix on a chromophore; however, the
signal produced by this polarization is itself a stochastic function
of time. Since the signal is typically at optical frequencies, it
must first be taken to quadrature (to the intensity level) and
then averaged over the complex noise. Recall that, upon going
to quadrature, the dominant intensity is derived from the cross
terms between the polarization on one chromophore and that
on another (cf., the bichromophoric model). The stochastic
averaging over the noisy light fields is now superimposed and
appears as a 2n-point time correlator, wheren is the number of
noisy field interventions in the development of thejth-order
polarization. This correlator may couple the evolutionary
histories of the two involved chromophores. This differs from
short pulse calculations in which the histories (t ands timelines)
are not coupled and hence integration over only one of them
yielding the nonlinear polarization is required. The usual
assumptions about the nature of the noise (circular complex
Gaussian statistics) and the complex Gaussian moment theorem
allow the 2n-point time correlator to be broken down inton!
“factorized” terms each havingn factors of two point time
correlators, which are mathematically much easier to handle.
Each of thesen! intensity level factorized term is represented
diagrammatically by an unique FTC diagram.

3. FTC Diagrams.In general, there is a defined correspon-
dence between any given intensity level factorized term com-
posing the noisy light signal and its FTC diagram, i.e., one can
draw a diagram for each of the multiplets of two-point (pair)
correlators that can arise in nonlinear spectroscopies based on
noisy light. A FTC diagram consists of a template ofs and t
timelines (the evolutionary histories of the involved chro-
mophores) each with one tick marking the time of each of the
n noisy field interventions. Superimposed aresegments(arrows
or lines) linking the times contained in each two-point correlator.
A τ-dependent pair correlator is represented by anarrow
segment pointing to the tick mark corresponding to the action
of the time-delayed fieldB′. A τ-independent pair correlator is
represented by aline segment connecting the two time points
contained in the pair correlator. The rules for constructing a
FTC diagram may be found in Appendix B of ref 15.

Clearly, from the standard definition of a pair correlator (its
vanishing at infinite time intervals) and the fact that any FTC

diagram represents a product of pair correlators, the contribution
to the total signal from all FTC diagrams that contain one or
more arrows must vanish asτ f ∞ leaving only the background
terms (the FTC diagrams having no arrows) in this limit. On
the other hand, atτ ) 0 all arrows turn into lines to join the
constant background FTC diagrams. When used in conjunction
with the WMEL diagrams, this allows for trivial determination
of the peak to background contrast ratio of the interferogram
for any given spectroscopy. Basically, the characteristics of the
final interferogram are a result of two main components: the
material response (the WMEL diagrams) and the light response
(the FTC diagrams) along with the interplay between the two
responses.

As a very simple example of setting up the FTC diagrams
for a noisy light spectroscopy, consider the case of first-order
resonant light-matter interaction. The first WMEL diagram in
Figure 1a shows the action of the positive Fourier component
of the field in promoting the ket-side of the density operator
from state g to state e (represented in the WMEL diagram by
a solid arrow pointing upward). This occurs on chromophoreR
at time t1 and the field action can come either fromB or its
delayed twinB′. The conjugate process is happening at times1

Figure 1. Illustration of how to obtain the FTC diagrams for a noisy
light spectroscopy. (a) The WMEL diagram for first-order resonant
interaction of light and matter. The solid upward-pointing arrow
represents ket-side promotion of the density operator via the positive
Fourier component of the field. The dashed upward-pointing arrow
represents bra-side promotion of the density operator via the negative
Fourier component. The action on chromophoreâ is conjugate to that
of chromophoreR. (b) The two amplitude or field level polarization
terms represented by the WMEL diagrams of (a) are multiplied and
stochastically averaged. Since eitherB or its delayed twinB′ may act,
one obtains four-field pair correlators. Each one of these is represented
by a FTC diagram. The first and last terms areτ-independent and thus
have FTC diagrams with only line segments. The second and third
terms areτ-dependent and therefore have arrow segments in their FTC
diagrams. In either case, the times of the correlated field actionst1 and
s1, for this example, are represented on the FTC diagram as tick marks
that are connected by either line or arrow segments. (c) The peak-to-
background ratio is obtained readily from the FTC diagrams. Atτ )
0 all arrow segments are equivalent to line segments, and atτ ) ∞ the
terms represented by FTC diagrams having only arrow segments vanish.
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on chromophoreâ. Here the negative Fourier component
promotes the density operator bra-side (represented in the
WMEL diagram as an upward dashed arrow). At the intensity
level, the polarizations developed on chromophoresR and â
are multiplied and stochastically averaged as indicated by the
left side of Figure 1b. Since each field action may originate
from B or B′, there are four field products that would appear as
pair correlators in the calculation of this term (indicated by the
middle of Figure 1b). The corresponding FTC diagrams are
shown adjacent to each of these terms. Figure 1c shows that at
τ ) 0 all the arrows in the FTC diagrams become lines and at
τ ) ∞ all the diagrams that contain arrows vanish. Since the
four diagrams atτ ) 0 are topologically equivalent to the two
FTC diagrams atτ ) ∞ the peak-to-background ratio for this
example is readily seen to be 2:1. Of course more information
than just the peak-to-background ratio can be obtained from
the set of FTC diagrams. In section III, several conceptual tools
which give insight into the physical mechanisms involved in
noisy light spectroscopy will be derived from the FTC diagrams.

E. Filtered Incoherent Light. We now seek to examine the
effect of filtering on the coherence function.61 Upon filtering,
the unfiltered stochastic part of the field in frequency spacep̃(ω)
becomesϑ(ω)p̃(ω), where ϑ(ω) is a deterministic complex
amplitude transmission function. The spectrum of the filter is
ϑ(ω)ϑ*(ω) ≡ Υ(ω). That is,Υ(ω) is the (intensity level) output
of the filter for a random input. Likewise,ϑ(ω)p̃(ω) is the (field-
level) output for ap̃(ω) input field.

At the intensity level, the stochastically averaged filtered light
is

where, in the first step, the transmission functions were pulled
out of the brackets because they are deterministic functions and,
in the second step, eq 7 was used. The complex second-order
coherence function for filtered light is defined as57,61

whereJΥ(ω) ≡ Υ(ω)J(ω). For situations whereΥ(ω) is much
narrower thanJ(ω), J(ω) is relatively flat over the much sharper
peaked part ofΥ(ω), so J(ω) ≈ J(ωj Υ)Υ(ω), whereωj Υ is the
center frequency of the filter. Equation 9 then becomes

The spectral density of the light is effectively replaced by the
spectral density of the filter in determining the coherence
function (compare eqs 6 and 10).

As an example, consider a four-point time correlator in
frequency space for filtered light:

where the complex Gaussian moment theorem was used in going
to the last step. The transmission functionsϑa andϑb are not
necessarily the same. This example is representative of what

one encounters in the analysis of I(2)CRS. Consider the first
term in parentheses and use eq 7

Transforming to the time domain, this becomes

where the trivial integrations have been performed and the
integrals separated;Jh is a constant (cf., eq 10). This is a product
of a Fourier transform and a conjugate Fourier transform. To
progress further with this example, for simplicity,δ-function
filters at different frequencies will be used [Υa(ω1) ) δ(ω1 -
ωj a); Υb(ω1) ) δ(ω1 - ωj b)]. Equation 13 then becomes

Upon taking the real part, this becomes cos∆baτ, where∆ba ≡
ωj a - ωj b.

The above example shows the coherence function of filtered
light that originally was broad, but of otherwise arbitrary form,
can show difference beats with a period equal to the separations
of the nominal centers of the filters. This forms the basis of the
spectral filter analogy to be applied to coherent Raman scattering
with noisy light later in this work.

III. Physical Concepts

Now that the preliminary concepts have been presented, we
shall attempt to develop a deeper intuitive understanding of the
physics describing the interaction of noisy light and matter and
the role of classical field correlations in noisy light spectroscopy.
Explicit examples will augment the discussion of general
concepts.

A. Conceptual Tools Provided by the FTC Diagrams.The
noisy nature of the light which is vital to all noisy light
spectroscopies blurs the physical picture of the underlying
mechanisms that make up this interesting area of physics. Not
only does a new layer of analytic challenge appear but perhaps
more interesting is the challenge to clarify the physical aspects
of the treatment. Doing this will result in a more intuitive picture
of noisy light spectroscopy. As stated above, it is believed that
(for stationarity and circular complex Gaussian statistics) the
FTC diagrams represent elementary physical components of
noisy light spectroscopies in general. That is, the FTC diagrams
represent terms in the analytic expression for the total signal
that have elementary physical interpretation. Any further
breakdown of the analytic expression would seem to lose such
physical meaning. One now seeks a more revealing understand-
ing of the FTC diagrams by developing several conceptual tools.

1. Preferred Region.The first of these tools involves the
nature of the light. The electric field of the noisy light forms a

〈ϑ(ω)p̃(ω)ϑ*(ω′)p̃*(ω′)〉 ) ϑ(ω)ϑ*(ω′)〈p̃(ω)p̃*(ω′)〉

) Υ(ω)J(ω)δ(ω - ω′)
(8)

γΥ
(1,1)(τ) ≡ ∫JΥ(ω)e-iωτ dω (9)

γΥ
(1,1)(τ) ) J(ωj Υ)∫Υ(ω)e-iωτ dω (10)

〈ϑa(ω1)p̃(ω1)ϑb(ω2)p̃(ω2)ϑa
/(ω′1)p̃*(ω′1)ϑb

/(ω′2)

p̃*(ω′2)〉e
i(ω1-ω ′2)τ ) ϑa(ω1)ϑb(ω2)ϑa

/(ω′1)ϑb
/(ω′2)〈p̃(ω1)p̃(ω2)

p̃*(ω′1)p̃*(ω′2)〉e
i(ω1-ω ′2)τ ) ϑa(ω1)ϑb(ω2)ϑa

/(ω′1)

ϑb
/(ω′2)e

i(ω1-ω ′2)τ(〈p̃(ω1)p̃*(ω′1)〉〈p̃(ω2)p̃*(ω′2)〉 +
〈p̃(ω1)p̃*(ω′2)〉〈p̃(ω2)p̃*(ω′1)〉) (11)

ϑa(ω1)ϑb(ω2)ϑa
/(ω′1)ϑb

/(ω′2)〈p̃(ω1)p̃*(ω′1)〉〈p̃(ω2)

p̃*(ω′2)〉e
i(ω1-ω ′2)τ ) ϑa(ω1)ϑb(ω2)ϑa

/(ω′1)ϑb
/(ω′2)J(ω1)δ(ω1 -

ω′1)J(ω2)δ(ω2 - ω′2)e
i(ω1-ω ′2)τ (12)

∫ dω1 ∫ dω2 ∫ dω′1 ∫ dω′2ϑa(ω1)ϑb(ω2)ϑa
/(ω′1)ϑb

/(ω′2)

J(ω1)δ(ω1 - ω′1)J(ω2)δ(ω2 -

ω′2)e
i(ω1-ω ′2)τei(-ω1-ω2+ω ′1+ω ′2)t )

Jh ∫ dω1 ∫ dω2ϑa(ω1)ϑb(ω2)ϑa
/(ω1)ϑb

/(ω2)e
i(ω1-ω2)τ )

Jh ∫ dω1 Υa(ω1)e
iω1τ ∫ dω2 Υb(ω2)e

-iω2τ (13)

∫ dω1 δ(ω1 - ωj a)e
iω1τ ∫ dω2 δ(ω1 - ωj b)e

-iω2τ )

eiωj aτe-iωj bτ (14)
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unique random pattern as a function of time. One might call
this its “fingerprint.” Now, for any given nanosecond light pulse,
B′ will have exactly the same fingerprint as that ofB, only it is
shifted in time byτ. When this time shift is within the coherence
time of the light (as long as|τ| < τc), the twin beamsB andB′
“recognize” that they originate from the same source and their
overlap results in high interferometric contrast (i.e., strong
constructive and also strong destructive interference). So an
approximatelyτc long section of the noisy light trace is the
shortest interval which gives a distinctive fingerprint region.
Equivalently, if one were to examine the fingerprint region of
the beamB around some moment in timet0 (measured from a
laboratory reference), one would find the identical fingerprint
region in beamB′ only centered in time att0 - τ. Were beam
B to perturb the system att0, then the “preferred” time giving
the concerted action of twinB′ would be the region aroundt0
- τ for optimal interferometric contrast. This region is
designated thepreferred region. Figure 2 illustrates the impor-
tant aspects of the concept.

The most basic experimental manifestation of the preferred
region is illustrated with a simple interferometric autocorrelation.
Here the twin noisy beamsB andB′ are made collinear as they
exit the Michelson interferometer and the intensity of this
collinear beam is recorded versus the relative delayτ between
B and B′. The resultant interferogram is shown in Figure 3,
which clearly illustrates the high interferometric contrast seen
whenτ < τc. At a given instantt0, theτ-dependent part of the
intensity results from the fieldB being taken to quadrature with
field B′. At t0, B′ offers a net constructive overlap of the noisy
envelope of the twin fingerprint regions associated with the
identical fingerprint region centered aboutt0 only when|t0 -
τ| < τc. The τ-independent background results from the
quadrature contributions from bothB itself (|B|2) andB′ itself
(|B′|2), hence, trivially achieving perfect overlap of the noise.
It should be noted that for certain noisy light experiments the
τ-independent background will be strongly suppressed.15

2. Time Symmetry.The second conceptual tool involves the
time symmetry of the elementary components (here referring
to the light and the material response) of the interferogram. The
time symmetry of the noisy field is rooted in the nature of the
preferred region. The preferred region hastwo-sided time
symmetry. In other words, ifB happened to have acted upon a
chromophore at laboratory timet0, then the “preferred” time

for B′ to join B in a concerted action is centered around
laboratory timet0 - τ such that action at (t0 - τ) - ε (where
ε is a time<τc) is equally “preferred” to action at (t0 - τ) + ε.
The two-sided time symmetry of the noisy light is seen
experimentally in the autocorrelation of Figure 3. By contrast,
in this same sense the material response function of the
chromophore hasone-sided time symmetry. As an example, in
the Bloch two-level system one encounters a simple coherence
response and a population response. First, a field action at time
t1 on the chromophore in the ground state (the first field
intervention) may cause an electronic polarization which will
subsequently decay with a dephasing rate constantγmg. Next, a
second field intervention can build on this polarization to create
an excited-state population, which then will decay with rate
constantγmm. Both events have one-sided time symmetry. If
the first field acts on the chromophore at timet1, then att1 -
ε there is no polarization while at timet1 + ε there is a
polarization. Likewise, if the second field acts att2 then att2 -
ε, there is only a polarization but att2 + ε there is a population.

The autocorrelation shown in Figure 3 is identical to the one
that would be seen by a short pulse having the same spectrum
(albeit phase-locked). We see that in some sense the preferred
region is like a short pulse. Indeed, in practice, noisy light has
been described as a random train of short pulses. One must use
this description with great caution however, since short pulses
imply at least some sort of phase locking. Phase locking further
implies that color locking does not hold. This will lead one to
results that are not consistent with experiment. Color locking
is indeed a fundamental attribute of noisy light.

3. Accumulation.Across the ensemble of chromophores the
noisy fields (and narrowband fields if any) may act on a given
ensemble member at any time during the pulse duration. For
those sequences of field actions that contribute to the signal of
interest, this ability for the fields to act at any time on a given
chromophore must be summed over the ensemble of chro-
mophores participating in producing the signal of interest. From
a topological point of view this is represented on an FTC
diagram as the freedom of a tick mark to “slide along a
timeline”. Since B and B′ are “always” present, any time
intervention (tick mark on the FTC diagram) or any pair of
interventions is free to slide along the timeline provided the
specific time ordering associated with a given FTC diagram is
maintained. That is, during the sliding along the timeline, tick
marks cannot cross one another. To “slide along the timeline”
indicates the potential for field action to take place at any time

Figure 2. Illustration of the preferred region. The electric field envelope
of two identical but relatively delayed light beams are shown. A given
noisy light trace, 1, has a distinctive fingerprint; any given section of
durationτc is referred to as a fingerprint region (FPR in figure). The
preferred region (PR in figure) is a special fingerprint region on noisy
light trace 2 associated with a given point on trace 1, i.e., the center
time point of the preferred region on trace 2 exactly matches the given
point on trace 1. Were trace 1 to perturb the system at timet0, then the
“preferred” time for trace 2 to act would be the approximatelyτc long
time interval around timet0 - τ.

Figure 3. Simulation of a simple interferogram under white detection.
Here the two noisy light fieldsB andB′ are simply superimposed on
the detector and the intensity is plotted as a function of the interfero-
metric delay timeτ. One sees high interferometric contrast whenτ is
small (|τ| < τc). This interferometric contrast diminishes as the relative
delay betweenB and B′ becomes large (|τ| > τc). For typical noisy
light sourcesτc is on the order of 100 fs or so. This provides the ultrafast
time resolution of noisy light methods. For this work a precise
mathematical definition ofτc is not important. Only the physical idea
of τc representing the relative delay time after which two identical noisy
beams are effectively uncorrelated is important. The marks on theτ
axis at(τc simply emphasize this physical notion ofτc.
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over which the tick mark is permitted to slide. However, an
individual tick mark is locked to a partner tick mark by the
segment (arrow or line) representing a pair correlator. The two
tick marks, thus linked, correspond to a correlated event pair
that must slide along the time line together. This ability to “slide
along the timeline” will be referred to asaccumulation.
Physically, accumulation represents the summation over the
ensemble of chromophores in which the correlated noisy field
interventions have the ability to act at anytime relative to the
other (nonpair correlated) action(s) that produce the final
nonlinear signal. Mathematically, it represents integration over
the time intervals between the light-matter interactions.

4. Synchronization.The fourth conceptual tool is concerned
with the event coupling between the two timelines (t and s).
This coupling involves interchromophoric pair correlators. It
has been noted how all of theτ-independent correlators are
depicted by lines. These correspond to the correlated action of
B with itself andB′ with itself. This implies tight synchroniza-
tion between the two chromophores of the events linked by a
given correlator line. The “precision” or “strength” of this
synchronization is inversely proportional toτc (the interfero-
metric width of the preferred region). That is, smallτc forces
strong or precise synchronization with the limit ofτc f 0 forcing
exact synchronization. Whenτc is much smaller than the
dynamics of the media, it is convenient to use theτc f 0 limit.
Synchronization is shown in Figure 4a forτ-independent
interchromophore correlation. Theτ-dependent correlators are
represented by arrow segments. These correlate the action of
field B with B′. Interchromophore synchronization has the same
meaning for arrowed segments; however, a very important
subtlety must be exposed. The synchronization of thes and t
timelines are still to within a “precision” of roughlyτc, but now
there is a translation in time by the delay line settingτ. For
example, ifB′ lags behindB for positiveτ and an arrow couples
t1 (B acting) ands1 (B′ acting), then on an absolute laboratory
timeline s1 )

p t1 + τ ( τc, where)
p means “prefers to equal.”

The concept of prefers to equal arrises from considering the
behavior of the ensemble. This is discussed in detail in a later
section. For a given action ofB at time t1, the preferred time

region for the action ofB′ on thes-line is s1 )
p t1 + τ ( τc.

This subtlety allows for indirect correlation (to be discussed
shortly) and has very significant effects on coherent Raman
scattering experiments. It is illustrated in Figure 4b.

5. Color Locking.The final conceptual tool, color locking,
follows from stationarity and the WK theorem (see eq 7). It
implies that, regardless of the spectral density of the sources,
only identical frequencies (colors) may correlate to one another
in a pairwise fashion. The consequence of color locking to FTC
diagram analysis is that, whichever frequency component
happens to act, from one field of a correlated pair (represented
by one end of a line or arrow) the other field of the correlated
pair (represented by the other end of the line or arrow) must
act with the same frequency component. This allows one to
maintain the use of correlator terminology for a single color
and refer to ax-x color-locked pair correlator, wherex is a
single frequency component of the noisy light.

Color locking manifests itself in many ways and is funda-
mental to understanding noisy light signals. One such example
(shown in Figure 5) is that of a degenerate four-wave-mixing
experiment in whichB and B′ act out of phase and the third
field is a narrowband field (ks ) kB - kB′ + kM). This is
sometimes referred to as forced light scattering.6 From simple
frequency mixing algebra, one might naively expect the
spectrum of the signal to be centered atωj s ) ωj - ωj + ωM

and to carry the width of the noisy fields. Color locking forbids
this however since the out-of-phase actions ofB and B′ are
correlated and hence on any given chromophore only the precise
frequencyx from both B and B′ may act. Inspection of a
representative WMEL diagram for this process (shown in Figure
5) clearly reveals that the out-of-phase action of the single
frequency cancels. This holds for all frequenciesx, so the noise,
in fact, cancels, and one is left with simply the bandwidth of
the narrowband field. By contrast, the relatively much weaker

Figure 4. Illustration of synchronization. Interchromophoric pair
correlators synchronize the otherwise independent time histories of
chromophoresRt andâs. The strength or precision of the synchronization
is τc. The top (bottom) horizontal line of the FTC diagram represents
the timeline forRt (âs). The tick marks are the times when the noisy
light interacts with the material. (a) The right-hand diagram is
representative of what a typical FTC diagram for a nonlinear process
would look like. This particular FTC diagram represents a term in which
there isτ-dependent correlation between timet1 andt2 and betweens2

and s3. Additionally, there isτ-independent correlation between the
timelines (t3 ands1). Theτ-independent correlator (line) synchronizes
the timelines such that the two time points involved in the correlator
are coincident. (b) This FTC diagram is similar to that of (a) but now
the interchromophoric correlation is alsoτ-dependent. Thisτ-dependent
correlator (arrow) synchronizes the timelines such that the two points
involved in the pair correlator are separated by exactlyτ.

Figure 5. An example of a degenerate four wave mixing experiment
using two noisy fieldsB andB′ and a narrowband field (M ). See text
for more details. (a) A projection of the input and signal light beams
on a plane perpendicular to the direction of propagation. The signal
emerges atks ) kB - kB′ + kM. (b) One of the 48 WMEL diagrams
for this process. The WMEL diagram represents one term in the
perturbative expansion of the density operator for the field interacting
with a generic chromophoreR. The vertical arrows represent ket-side
and bra-side transitions. The direct correlation between the noisy field
actions is subject to color locking. This results in complete cancellation
of the noise, and the resulting signal spectrum has narrow bandwidth.
(c) A WMEL diagram for an alternative four-wave mixing process,ks

) kB + kB′ - kM, in which there is no direct correlation between the
noisy field actions on a given chromophore. Hence, color locking is
not required and the resulting signal has a broad bandwidth.
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in-phase degenerate four-wave mixing signal is shown in Figure
5c. Here the in-phase noisy field actions are not pair correlated
and hence not color-locked. This results in no noise cancelation
and thus in a broad signal spectrum seen experimentally. Later,
we shall see that color locking has particularly significant but
more subtle effects for (in-phase) interchromophoric correlations.

B. Spectral Filter Analogy. It is interesting and insightful
to view the material as a nonlinear filter of the noisy light. (More
correctly, the material is a nonlinear “selective frequency
enhancer.”) Thisspectral filter analogyis pursued in the context
of electronically nonresonant I(2)CARS experiment but does
apply generally. I(2)CARS spectroscopy involves a single
intervention of a narrow band beam along with interventions
by B andB′ (fields that act mutually in phase but out of phase
with respect to the narrow band fieldM). Furthermore, the signal
is dominated by those terms which enjoy a Raman resonance.
The corresponding Raman resonant WMEL diagrams for the
I(2)CARS process are shown in Figure 6. A common charac-
teristic of these diagrams is that the first two steps (field
interventions) always involve one noisy field action and the
narrow band field action, which are effectively simultaneous
for the electronically nonresonant case. It is now convenient to
develop several definitions. We consider the first two steps, after
which there is a Raman resonance, to make up the firststage
of the I(2)CARS process. These first two steps will be referred
to collectively asstage1.The last two steps, the third field
intervention and the fourth wave step, will be collectively called
stage2 (of the I(2)CARS process). One particular WMEL
diagram is redrawn in Figure 7. The Raman resonance after
stage1is seen to enhance the effectiveness of a small region of
the noisy spectrum (centered aboutx0 ) ωM + ωR) in
developing the eventual fourth wave. One particular Raman
resonant frequency componentx that is selectively enhanced
by the Raman resonance is labeled in Figure 7. The bandwidth
in which x is contained is on the order ofγmg + Γm, which is
the sum of the material line widthγmg and the width of the
narrow band spectrumΓm. Effectively, the choice ofx has been
“filtered” and takes on a much more restrictive bandwidth; on
the order ofγmg + Γm, rather than the width of the noisy light
spectrum which is parametrized byΓ (Γ . γmg). This effective
“filter” (due to the Raman resonance) will be called thestage1
filter, since it involves the cooperation of the first two field

interventions that make upstage1of the I(2)CARS process. Now,
turning to the third step (field intervention), any frequency
(labeledy in Figure 7) within the broadband spectrumJ may
act. Thus, the field launched by the induced third-order
polarization [the fourth wave step (wavy line in the WMEL
diagrams)] is just as broad as the input noisy fields. When all
frequencies of the signal are simultaneously detected (white
detection), the interferogram exhibits a rapid monotonic decay
with rateΓ. However, if instead, the fourth wave is detected in
narrow band mode, the narrowΓslit bandwidth detected frequen-
cies together with the Raman resonance (stage2) act as a second
narrow band-pass filter (centery0 ) ωj D - ωR, width γmg +
Γslit) which greatly limits the frequencies thaty may span and
still enjoy Raman resonance. This second filter, due to the
cooperation of the third field intervention and the narrowband
detection, will be called thestage2 filter.At this point there is
an analogy with the example presented earlier, where thestage1
and stage2 filtersplay the role of the transmission functions
(at the amplitude level). The WMEL diagram in Figure 7 taken
to quadrature is represented by one of the “uncrossed” FTC
diagrams in Figure 8 (diagrams Ia and Ib). We see that just
like the filtered light example, we have a Fourier transform of

Figure 6. The 8 of the 48 WMEL diagrams for I(2) CARS that have
a Raman resonance after the second field intervention. Diagrams DAi

and DAi ′ are identical except for the reversal of the interaction ordering
of B andB′.

Figure 7. One of the WMEL diagrams for I(2)CARS. Only a small
subset of frequencies in the noisy light spectrum can couple withωM

such that a Raman resonance is achieved after the second field action.
This is indicated by the narrow spectrum shown superimposed on the
broad spectrum shown below the WMEL diagram. This limitation on
the frequencies is called thestage1filter. In the final step, although
any frequency within the bandwidth of the noisy light can act, only a
small subset will produce a signal that will reach the (monochromatic)
detector. This again effectively filters the broad spectrum down to a
smaller subset. This is called thestage2 filter. Difference beating
between these filtered subsets of frequencies is observed in the
interferograms for I(2)CARS.

Figure 8. The fourτ-dependent FTC diagrams for I(2)CARS. Diagrams
Ia and Ib are called uncrossed diagrams and Ic and Id are called crossed
diagrams. Tick marks are drawn only for noisy light interactions; thus,
this third-order process has only two tick marks exposed on the FTC
diagram because the narrowband interaction is not shown.
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the intensity level spectrum of thestage1 filterand the conjugate
Fourier transform of the intensity level spectrum of thestage2
filter.

For example, when all the intensity level spectra (noisy light,
stage1 filter, and stage2 filter) are Lorentzian, the resulting
interferogram is of the form Typically,Γslit,Γm , γmg and this

becomes

The difference frequency (x0 - y0) is exactly (ωj D - ωM - 2ωR).
This is the familiar radiation difference oscillation (RDO)
common to the narrow-band detected I(2)CARS.20,22,23,27-29 The
oscillations are now viewed as difference beating between two
filter functions. It should be noted that earlier work (pre ca.
1997) used RDO to stand for Rabi detuning oscillation. The
Rabi detuning oscillations and the radiation difference oscilla-
tions are exactly synonymous. The change, which was limited
by the motivation to preserve the “RDO” initials, was made
for two reasons. For one, radiation difference oscillations
captures the spirit of the spectral filter analogy and the fact that
the difference instage1and stage2“filtered” light was the
source of the interference beats: the RDOs. Secondly and more
importantly, it was pointed out during the review process that
Rabi detuning has such a “textbook” definition in the develop-
ment of the Rabi frequency in elementary quantum mechanics.
Although the RDOs are related to the Rabi frequency problem
in a general sense, use of the phrase Rabi detuning oscillation
might cause unnecessary confusion.

The spectral filter analogy for the “crossed” FTC diagrams
(Ic and Id) in the I(2)CARS set (Figure 8) is not quite as
transparent as for the uncrossed diagram just discussed. For the
crossed FTC diagrams, a given colorx selected by thestage1
filter on chromophoreRt is forced to also appear atstage2on
chromophoreâs because of the crossed topology of the FTC
diagrams and color locking. That is, a pair correlator (arrow
segment) for the crossed FTC diagrams connects timest1 (on
Rt) ands2 (on âs) and this pair correlator is color-locked as a
consequence of stationary field statistics. Similarly, colory
selected by thestage2 filteron Rt is forced to appear atstage1
on âs. Such entanglement complicates the analogy. Shortly
however, the physical rationalization of both the crossed and
uncrossed FTC diagrams that make up the I(2)CARS signal will
be taken to a higher level of sophistication by elaborating on
the requirement of color locking.

This filter analogy may be applied to electronically resonant
spectroscopies as well. However, the electronic material band-
width transmission function is now often as wide as the noisy
light spectrum. Nonetheless, as the noisy beams are detuned
from the center Bohr frequency, some of the broadband
spectrum no longer overlaps the transmission function, hence,
limiting the effective bandwidth and slowing the decay rate of
the interferogram. This is one reason the apparentT2 times
measured at different excitation frequencies within an electronic
absorption band of the sample are often different: they increase
when the broadband light spectrum overlaps with less of the
absorption spectrum. It is important to note that these arguments
are appropriate only when the states comprising the manifold
of the electronically resonant energy band can be treated more
or less independently. If there is a strong quantum mechanical

coupling between states within the manifold, then this coupling
can act to “unlock” the colors and hence moots arguments based
on color locking. This is evident in noisy-light-based forced-
light scattering whereT2 measurements deviate from what would
be expected from simple color locking.6,62

C. Wave Packets and Indirect Correlation.We have seen
the importance of color locking throughout this paper; however,
it brings up an interesting apparent paradox. Since a given
frequency component is required to pair correlate only with itself
(the identical frequency component), it is completely uncorre-
lated with any other frequency component in its (or any other)
spectrum. It is neither affected by nor affects other colors; it is
not phase-correlated (phase-locked) with the other colors. Such
color locking necessarily implies an infinite correlation time.
Yet most of the interferograms encountered in noisy light do
not show infinite correlation. Furthermore the idea of the
preferred region depends on this finite correlation time. At first
glance, there appears to be a paradox. This is resolved by
examining the problem more carefully. We seek to explain why
many interferograms decay with increasing|τ| to a constant
background.

First of all, infinite correlation times are in fact observed in
the ideally monochromatic detection limits for zeroth-order
interferograms; that is, when there is no sample andB andB′
are simply superimposed on the monochromatic detector. In this
case, only one pair correlator (one arrow) makes up the FTC
diagram. When the monochromatic detector is set at a frequency,
ω ) x, then the only contribution to the detected signal comes
from thex-x color-locked pair correlator (all other frequencies
are blocked), and the infinite correlation betweenx and itself is
realized. However, when the monochromaticity of the detector
is relaxed, and in particular taken to the limit of white detection,
then the signal is a superposition of the continuous distribution
over all available colors of the color-locked pair correlators,
each having infinite correlation time. Though any given color
is infinitely self-correlated, the resultant signal field is a wave
packet inτ-space that decays with a rate constantΓ that is
proportional to its spectral width. In other words, interferometry
with monochromatic detection selects a single Fourier compo-
nent from the noisy light spectrum which has an infinitely
extended sinusoidal correlation function. Opening up the detector
to a broader range of frequencies simply superimposes more
Fourier components and, hence, more infinitely extended cosine
correlation functions, each with a slightly different frequency.
This superposition forms a wave packet inτ-space to produce
an interferogram that decays to a constant background. White
detection always selects forτ-space wave packet behavior
regardless of the spectroscopy of interest and leads to finite
correlation times.

The more interesting case is when the nonlinear behavior of
the material produces decaying interferograms even at the
monochromatic detection limit, where (by definition) noτ-space
wave packets can be formed. This yields the important conclu-
sion that the material mediates, through nonlinear interaction,
the connection between field interventions even when the
intervening colors are not the same (and are fully uncorrelated).
That is, the material allows for a connection between two field
intervention times (atstage1 and stage2 in the I(2)CARS
example) even when those two times are not linked by an arrow
(or line) segment in the FTC diagram (i.e., for the I(2)CARS
example, there is no pair correlator linking the colors selected
by thestage1andstage2filters on a given chromophore.) This
concept is most easily seen for uncrossed FTC diagrams of the
type shown in Figure 8 (this type appears for I(2)CARS among

I ∝ e-2γmg|τ|cos(x0 - y0)τ (16)
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others). Here colorx (from B) acts att1 (during stage1) on
chromophoreRt and is correlated to its conjugate action (from
τ shifted B′) at s1 (during stage1) on chromophoreâs. One of
the uncrossed diagrams is redrawn in Figure 9 for nonzeroτ.
As τ moves from zero, the arrow (representing the pair-
correlated actions of fieldsB andB′) prefers to act (with field
B′) on âs at a times1, such that (t1 + τ - τc) < s1 < (t1 + τ +
τc). The other colory (selected by thestage2 filter) acts ats2

on âs. It prefers to act onRt at timet2, such that (s2 + τ - τc)
< t2 < (s2 + τ + τc). This effectively forcest1 andt2 apart (see
Figure 9) (stage1 and stage2 are forced apart). We know
analytically that the uncrossed type of FTC diagram gives rise
to terms which decay in|τ| with rate constant 2γmg; 20,22,23,27-29

yet, there is no (solid) arrow segment connecting the two time
interventions on the same chromophore, namely, betweent1 and
t2 or s1 ands2, which could obviously probeγmg. This apparent
problem is resolved with the help of Figure 9. Here, increasing
τ forces the two interventions at timet1 and t2 to be separated
by at least 2τ; as a result, the contribution of this FTC diagram
to the total interferogram decreases (with decay rate constant
2γmg) asτ is increased even thoughτ-dependent pair correlators
never appear betweenstage1and stage2on any given chro-
mophore. (The factor of 2 accounts for the 2-fold gain in the
t1, t2 separation for increasingτ as per Figure 9.) The same
argument holds when makingτ more negative, except now it
is s1 ands2 that are forced apart. So, in this wayτ indirectly
probes the material dephasing rateγmg (denoted by the dotted
arrow in Figure 9). Althoughx and y are not locked to each
other through a pair correlator, they are indirectly connected
through the event orderings on the chromophores. Hence, this
indirect connection introduces a finite correlation to the inter-
ferograms even for monochromatic detection. This indirect
connection between time points (t1 andt2 in our example, Figure
9) will be referred to asindirect correlation. Whenever the
material is involved in a nonlinear process (multiple field
interventions), such that the event orderings force an indirect
correlation between different two time points, which do not
otherwise form a correlated event pair and may even involve
different colors, the resultant interferogram will decay even
when the signal is detected in narrowband mode. This decay is
probed through such indirect correlation. The phenomenon of
indirect correlation is discussed in a more general context and
for a variety of FTC diagram topologies elsewhere.63

D. Ensemble versus Single Chromophore Thinking and
the Preferred Region.Often in nonlinear optics, one does not

need to be careful to distinguish between ensemble thinking
and single (or few) chromophore thinking. Typically, thinking
about a generic chromophore is sufficient for understanding the
physics of the process. However, the topic of the preferred
region does require a little more care. Above, we have concluded
that a color-locked pair at a single frequency is infinitely
correlated, and yet we need to refer to a preferred region in
which an action ofB prefers to correlate with an action ofB′.
The preferred region must be viewed in an ensemble sense. Note
that in what follows we are not considering the spatial
distribution of the chromophores in the ensemble. Spatial
considerations do add an extra level of complexity to the
problem,22,55,56but these effect do not seem to have a dramatic
impact on experimental results. Theoretical descriptions of noisy
light experiments almost never include the spatial aspect of the
interaction volume. Rather than thinking of a single chro-
mophoreRt, one must consider an ensemble ofRt chromophores
at some timet0. Although only one color of, for example, field
B acts on a given chromophore, all colors fromB with spectrum
J(ω) are present and act on members of the ensemble ofRt

chromophores. Now, it is only when the correlated action of,
for example, B′ on chromophoreâs is summed over the
ensemble ofâs chromophores that the preferred region has
meaning. It is an “ensemble wave packet” (now in real time
rather than in interferometric time) formed by the superposition
of the (infinitely extended sinusoidal functions) correlated
actions over theâs chromophores. In other words, at any given
time there is a distribution ofRt chromophores which have
experienced a field intervention. The number of chromophores
acted upon by a given frequencyω is weighted byJ(ω) (the
spectrum of the light). Although any given frequencyω from
B acting onRt is infinitely correlated with the same frequency
ω from B′ acting onâs, the combined sum over the weighted
distribution of frequencies across the ensemble forms a wave
packet. The preferred region is now defined as the unique
interval where this maximum interference (wave packet) takes
place. This real time ensemble wave packet is precisely
analogous to theτ-space wave packet previously discussed,
except now it occurs in a space that one is not measuring (i.e.,
in real time across the ensemble). With this said, it is almost
invariably more convenient in practice to think of the preferred
region not as this ensemble wave packet but as described
previously.

IV. I (2)Cars: An Application of Physical Ideas

Picking up from the spectral filter analogy, this section
characterizes the I(2)CARS interferogram and spectrum for a
pure system (only one chemical species with only one Raman
resonance) using only the previously developed physical insights
afforded by the FTC diagrams and the WMEL diagrams. The
physical description of the I(2)CARS signal to follow is
inherently less precise than the mathematical one already
presented;20,22,23,27-29 however, it complements the mathematics
in that one can now step away from the rigorous constraints of
the equations and build a physical model that captures the
essence of the I(2)CARS process in a more tangible and
presumably more easily understandable way. So, the goal of
this section is to build such a model that consistently brings
one to the same conclusions as the mathematical treatment.

We know that the (narrowband detected) I(2)CARS interfero-
gram is dominated by the terms of the form20,22,23,27-29

Figure 9. Illustration of indirect correlation. Direct correlation between
the first tick marks on each timeline cause the first tick mark on the
s-timeline to beτ ahead of that on thet-timeline. Consequently the
second tick mark on thes-timeline must be positioned at leastτ ahead
of the first tick mark on thet-timeline. Since the second tick marks on
each timeline are correlated, the one on thet-timeline must beτ ahead
of the one on thes-timeline. This results in the topological constraint
that the first and second tick marks on thet-timeline must be at least
2τ apart. Thus the two tick marks are indirectly correlated because of
their direct correlation with events on thes-timeline.

I ∼ e-2γmg|τ|[cos∆Aτ
2γmg

+
sin∆A|τ|

∆A
] (17)
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The complete set of WMEL diagrams for the I(2)CARS signal
are shown elsewhere,28 and theτ-dependent FTC diagrams are
the same as those in diagrams Ia-Id in Figure 8. For brevity,
the discussion will be limited to DA1 and DA1

/ of Figure 6. The
arguments may be easily extended to the other diagrams. Since
γmg is the only decay rate constant to be discussed in the
remainder of the chapter, we drop the subscripts for convenience
(γ ≡ γmg).

A. Rationalization of the Cosine Term.The cosine term in
expression (17) is associated with the uncrossed FTC diagrams
(Ia and Ib in Figure 8). On any given chromophoreRt with the
associated WMEL diagram DA1 of Figure 10, the first action
by the noisy field at some frequencyx is limited to within the
bandwidth of the noisy light spectrumJ, all frequencies of which
are represented across the ensemble of chromophores. However,
those members of the ensemble for which the intervening
frequencyx satisfies (ωM + ωR - γ/2) < x < (ωM + ωR +
γ/2) give an enhanced contribution to the eventual production
of the fourth wave. It is for just thesex that the subsequent
action of the monochromatic fieldωM can reach the real state
m (bandwidthγ) and enjoy a Raman resonance (stage1 filter).
We shall focus on these Raman resonant chromophores. The
first action ofx, Raman resonance limited to roughlyγ, reaches
a virtual statef1. Becausef1 collapses exceedingly rapidly, the
monochromatic fieldωM must then act “instantaneously;” i.e.,
on a time scale much faster then any chromophore-bath
interaction. This is represented in the WMEL diagram of Figure
10 as the arrow tail ofωM starting exactly at the same virtual
statef1 at the head of thex arrow. This will be referred to as an
elastic field-connection. Now, a particular frequencyy selected
from the noisy light may act any time during the decay of the
vibrational coherence. This is on a time scale where energy may
be exchanged (inelastic) with the bath, so the tail ofy may start
anywhere within a spreadγ about the center Bohr frequency
ωR (inelastic field-connection), but it must reach the sharp virtual
state fD set by the exact detector settingωj D; otherwise, the
induced polarization will launch a fourth wave at a frequency
ωs * ωj D which will not reach the detector (this is the action of

thestage2 filter). So, of the entire noisy spectrumJ, y is limited
to (ωj D - ωR - γ/2) < y < (ωj D - ωR + γ/2). Thus, the energy
conservation condition isx + y + ∆Ebath ) ωM + ωj D, where
∆Ebath is the energy exchanged with the bath and may be as
large as roughly 2γ. At every detected frequencyωj D, there are
two degrees of freedom:x (or y) and∆Ebath. The total range of
frequencies across the ensemble for resonant diagram DA1 in
Figure 10 is roughly 2γ [a bandwidth ofγ is available to both
x andy (γ + γ ) 2γ)].

Now, because of color locking, only a very specific second
(conjugate) chromophoreâs may partner withRt at the quadra-
ture level. Here, the first intervention must be exactly the same
x (acting conjugately) as that in DA1. Again, ωM (acting
conjugately) acts onâs “instantaneously” (elastic field-connec-
tion) from virtual state f1 and resonance is automatically
achieved (given that resonance was achieved onRt). The same
y (now acting conjugately atstage2) then acts to always reach
the sharp detector setting. In this example, there is never any
x-y conflict, sox = (ωM + ωR) andy = (ωj D - ωR) always.
A x-y conflict refers to the case wherex and y both enjoy
resonance onRt (âs) but neither do on the conjugate chro-
mophore âs (Rt). The cos∆Aτ is rationalized as before: a
difference beating of filter functions. Since∆Ebath must be the
same for DA1

/ as that for DA1, no additional spread is intro-
duced, so the cosine term multiplied by the factor of1/2γ
accounts for the integration over the overall spread (in the cosine
term) of the bichromophoric contribution across the ensemble.
The 2γ decay withτ is a result of indirect correlation.

B. Rationalization of the Sine Term. The sine term in
expression (17) is associated with the crossed diagrams (Ic and
Id of Figure 8). Without loss of generality, we may take the
same situation for chromophoreRt as when rationalizing the
cosine term: ax filter exists atstage1and ay filter exists at
stage2. Now, for crossed FTC diagrams, thisRt is paired with
a conjugate partner (âs) chromophore at the quadrature level
whose first intervention (stage1) must be exactlyy (because of
color locking) reaching virtual statef2. In generalx * y, and
the subsequent “instantaneous” action ofωM cannot achieve a
Raman resonance as it did for uncrossed diagrams (compare
DA1

/ of Figure 10 and DA1
/ of Figure 11) sincey is not the same

color (to withinγ) selected by thestage1 filter. If resonance is
not achieved, only a virtual statef3 is reached (as opposed to
the real statem for the uncrossed FTC diagram case) instage1
and, in the third step onâs, x appears (color-locked fromstage1
on Rt) and is now elastically field-connected toωM. It must act
instantaneously from virtual statef3 as opposed to the case for
the uncrossed diagrams, in whichx can always act inelastically
during the decay of the vibrational coherence. Again, resonance
exists afterstage1on Rt but not onâs for the crossed FTC
diagrams; it exists afterstage1on both Rt and âs for the
uncrossed diagrams. This loss of inelastic field-connection
between thestage1andstage2sharply tightens the conservation
of energy constraint to (x + y) ) (ωM + ωj D). The influence of
the bath is eliminated and there is a loss of a degree of freedom
(∆Ebath). The diagrams have zero spread across the ensemble.
The consequent sine behavior of the interferogram can be
rationalized in a manner similar to that for electronically
resonant versus electronically nonresonant impulsive Raman
scattering. It is also similar to the resonant-nonresonant I(2)-
CARS cross terms in (resonant) solute-(nonresonant) solvent
systems.20,22,23,27-29 They both have terms exhibiting pure sine
behavior. In each of these cases, it is argued that there is a factor
of i distinction between the nonresonant and resonant limits of
a given density matrix element. That is, in the nonresonant limit,

Figure 10. Rationalization of the cosine term in mathematical formula
for I(2)CARS. See text for a detailed discussion. Dashed horizontal lines
represent virtual states that collapse exceedingly rapidly and thus result
in the “elastic field-connection.”
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one of the energy denominators is approximately purely real,
but in the resonant limit this same energy denominator is
approximately purely imaginary; hence, the two limits differ
by an imaginary constant and are out of phase byi (or π/2). For
our case (withx * y), DA1 (on Rt) is fully resonant (now with
spread zero from the stronger energy conservation constraint)
and DA1

/ (on âs) is nonresonant. So, we have a necessarily
resonant-nonresonant situation for the crossed FTC diagrams
in contrast to the resonant-resonant case for the uncrossed FTC
diagrams. Thus, these two cases differ by a factor ofi; thus,
the crossed FTC diagrams are phase-shifted byπ/2 with respect
to the (cosine-like) uncrossed diagrams. They are therefore sine-
like. Here, because of thex-y conflict regarding resonance,
the sine terms are weaker than the cosine terms.

It should be noted that, for the crossed FTC diagrams, one
chromophore (Rt or âs) locks onto a perfect resonance after
stage1and the other is fully nonresonant rather then each being
somewhat off resonance. We need not (to a good approximation)
consider the case where each chromophore is somewhat off
resonance.64 Only one parameter∆A is needed to characterize
the detuning from resonance for

[seeâs (DA1
/ ) in Figure 11]. That one chromophore is always in

perfect resonance while the other is fully off resonance in the
crossed FTC diagram case is simply a limit of an optimization
problem.64

The above phase shift argument works well for thex * y
case, but it breaks down whenx f y (small detuning:∆A f
0). At first glance, it appears that the conservation of overall
energy constraint should be relaxed whenx = y sincey is no
longer forced to launch from a virtual state (there now is no
x-y conflict), and hence, the sine contribution should become
cosine-like as∆A f 0. However, the more precise mathematical
treatment shows20,22,23,27-29 that the sine term appears for allx

(even when∆A f 0), so there must be an additional constraint
that removes the∆Ebath degree of freedom. This constraint can
most easily be seen if one takesτ = 0 and goes to the white
light limit for the noisy source (τc f 0). Under these conditions,
it is easy to see that the uncrossed (diagram I in Figure 12) and
crossed (diagram II in Figure 12) FTC diagrams are very
different in terms of accumulation and more importantly with
regard to intervention times. Diagram I illustrates the fact that
the two tick marks on thes andt time lines may have nonzero
separation (y need not act instantly afterωM). Conversely,
diagram II enjoys no such separation of the light interventions
and againy is forced to act with elastic field-connection with
ωM even when on resonance. In a sense, diagram II is not
allowed to feel the resonance. That is, the crossed nature of the
pair correlators forces the instantaneous action ofstage1and
stage2. The resonance cannot be explored on one of the two
chromophores (even thoughx ) y). Thus, the strict energy
conservation condition is maintained for allx - y, even those
such thatx = y. As a result, the sine behavior is likewise
maintained for allx - y not just the in case whenx * y. The
elastic field-connection condition leads to no spread over the
ensemble and hence no1/2γ factor. Furthermore, the contribution
must be weaker (relative to the cosine term) by the degree of
nonresonance∆A, giving the 1/∆A factor. This crossed FTC
diagram continues to allow for indirect correlation and hence
to the e-2γ|τ| behavior. Figure 13 shows the anatomy of the
expression for the I(2)CARS interferogram with the correspond-
ing physical pictures as indicated.

V. Conclusion

The goal of this paper was to set forth several physical
concepts which have proven to be of substantial aid in the
understanding of the underlying physical mechanisms of noisy
light spectroscopy. The technique of factorized time correlation
diagram analysis and the WMEL diagrams with their ties to
the previous mathematical treatment of the noisy light problem

Figure 11. Rationalization of the sine term in mathematical formula
for I(2)CARS. See text for a detailed discussion. Dashed horizontal lines
represent virtual states that collapse exceedingly rapidly and thus result
in the “elastic field-connection.”

Figure 12. Topological constraints of the FTC diagrams force aπ/2
phase shift between the cosine term arising from the uncrossed FTC
diagram and the sine term arising from the crossed FTC diagram. See
text for more details.

Figure 13. The mathematical anatomy of the I(2)CARS signal and the
physical concepts that explain the various factors in the expression.

(y - ωM - ωR) ) (ωj D - x - ωR)

) ∆A ≡ (ωj D - ωM - 2ωR) (18)
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served as a basis for these physical notions. We saw that each
concept manifests itself as an observable characteristic of a
particular noisy light process. Examples were given to add
concreteness the general discussions of the physical concepts.
I(2)CARS served as a particularly useful example. It is not the
role of these concepts developed here to take the place of further
mathematical treatment of noisy light-matter interaction, but
it is hoped that this ideas will serve to guide future investigation
on both the experimental and theoretical fronts.
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